opredelitev povprečja

Posebna uporaba v matematiki

Koncept, ki nas zadeva v tem pregledu, je tesno povezan s svetom matematike, saj njegov izračun vključuje osnovno znanje matematičnih operacij, vendar moramo poleg tega, da smo predmet aritmetike, reči, da je ta vrsta izračuna zelo prisotna v našem vsakdanjem življenju ker ga uporabljamo za natančno poznavanje povprečja različnih vprašanj.

Razdeljena točka na sredini ali sredi nečesa

Z besedo povprečje se sklicujemo tudi na točko, v kateri je nekaj verjetno, da bi se delilo na sredino ali na sredino, in tudi na sredino vprašanja.

Vrednost, ki izhaja iz deljenja vsote vseh vključenih vrednosti

Povprečni izraz je znan kot tista količina ali povprečna vrednost, ki izhaja iz deljenja vsote vseh vrednosti s številom teh.

Da bi dobili takšno količino, moramo imeti vsaj dve količini, iz katerih bomo dobili to srednjo točko, to je, da gre za relacijski koncept, nemogoče je povprečiti sliko s seboj.

Če je številk več, jih je treba vse dodati in nato deliti s številom upoštevanih številk. Če želimo na primer vedeti, kakšno je povprečje študenta, bomo to morali opraviti na podlagi ocen, ki jih je pridobil na zaključnih izpitih, to so ocene, 8, 7, 3 in 5, najprej dodati vse te številke, kar nam daje enotno številko 23, nato pa bomo za pridobitev zadevnega povprečja morali to številko deliti s številom pridobljenih ocen, to je 4, taka delitev nam da rezultat 5,75, bo končno povprečje študenta 5,75.

Če želite, da dobite povprečje temperature, povprečje dobička, ki ga podjetje doseže v enem letu, povprečje stopenj inflacije, življenjskih stroškov ali celo povprečje dni, ko je delalo. in tisti, ki niso delali zaposlenega, naj upoštevajo isto metodologijo kot zgoraj omenjena.

Po drugi strani pa izračun povprečja katere koli od teh stvari, ki smo jih omenili, ali tistih drugih verjetnih povprečja in na katere se ne sklicujemo, zelo pomaga, ko je treba izvesti statistiko in nato biti sposoben ukrepati kot rezultat njihovih rezultatov.

Če je na primer izračunano povprečje vseh študentov tečaja in je precej pod pričakovanji, bo poznavanje tega primanjkljaja omogočilo izvajanje novih pedagoških strategij in spreminjanje obstoječih, ker očitno niso dali pričakovanih rezultatov. In enako velja za podjetje, če je povprečje nizko, je očitno, da njegov napredek ne gre dobro, zato bo mogoče izboljšati njegovo smer, da bi izboljšali dohodek.

Na izobraževalnem področju: kazalnik študentske akademske ravni

Tudi v izobraževalnem okolju ima pojem povprečje ponavljajočo se uporabo in je zagotovo relevantno vprašanje, ker je zvest pokazatelj izobrazbene stopnje učenca. Ko je povprečje visoko, med 8 in 10 točkami, se bomo soočili z odličnim študentom, če pa je povprečje pod temi številkami, pa z običajnim študentom.

Tudi povprečje, doseženo pri nekaterih predmetih, je tisto, ki v številnih primerih študentu omogoča, da predmet promovira, če pa tega ne doseže, pa ga ne doseže.

Če je povprečje zelo dobro, bo študentu omogočil dostop do časti, da je standardni nosilec svojega predmeta

Tudi povprečje, ki ga bodo učenci razreda ali oddelka pokazali, nam bo omogočilo vedeti, ali so se vsebine naučile pravilno ali ne. Z drugimi besedami, povprečje omogoča kategorizacijo uspešnosti študentov.

Šolsko povprečje je zelo enostavno izračunati in ni nobenih razlik od načina izračuna drugih povprečij. Če v letu opravimo osem predmetov in smo zanje dobili naslednje ocene: 4, 7, 10, 9, 7, 8, 9 in 5, moramo dodati vse te ocene in jih razdeliti na število predmetov, to je , 8, medtem ko bo povprečje 7,35.

Drugi pojmi, povezani z izrazom, se izkažejo za povprečen državljan, ki bo tisti, ki ustreza vsem značilnostim povprečja populacije; Y. povprečje meseca ko je na datume blizu sredine meseca, ki jih je treba upoštevati.


$config[zx-auto] not found$config[zx-overlay] not found